
1ML – Core and Modules United (F-ing First-class Modules)

Andreas Rossberg
Google, Germany

rossberg@mpi-sws.org

Abstract
ML is two languages in one: there is the core, with types and ex-
pressions, and there are modules, with signatures, structures and
functors. Modules form a separate, higher-order functional lan-
guage on top of the core. There are both practical and technical
reasons for this stratification; yet, it creates substantial duplication
in syntax and semantics, and it reduces expressiveness. For exam-
ple, selecting a module cannot be made a dynamic decision. Lan-
guage extensions allowing modules to be packaged up as first-class
values have been proposed and implemented in different variations.
However, they remedy expressiveness only to some extent, are syn-
tactically cumbersome, and do not alleviate redundancy.

We propose a redesign of ML in which modules are truly first-
class values, and core and module layer are unified into one lan-
guage. In this “1ML”, functions, functors, and even type construc-
tors are one and the same construct; likewise, no distinction is made
between structures, records, or tuples. Or viewed the other way
round, everything is just (“a mode of use of”) modules. Yet, 1ML
does not require dependent types, and its type structure is express-
ible in terms of plain System Fω , in a minor variation of our F-ing
modules approach. We introduce both an explicitly typed version
of 1ML, and an extension with Damas/Milner-style implicit quan-
tification. Type inference for this language is not complete, but, we
argue, not substantially worse than for Standard ML.

An alternative view is that 1ML is a user-friendly surface syntax
for System Fω that allows combining term and type abstraction in
a more compositional manner than the bare calculus.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Modules; F.3.3
[Logics and Meanings of Programs]: Studies of Program Constructs—
Type structure

General Terms Languages, Design, Theory

Keywords ML modules, first-class modules, type systems, ab-
stract data types, existential types, System F, elaboration

1. Introduction
The ML family of languages is defined by two splendid innova-
tions: parametric polymorphism with Damas/Milner-style type in-

[Copyright notice will appear here once ’preprint’ option is removed.]

ference [18, 3], and an advanced module system based on concepts
from dependent type theory [17]. Although both have contributed
to the success of ML, they exist in almost entirely distinct parts
of the language. In particular, the convenience of type inference is
available only in ML’s so-called core language, whereas the mod-
ule language has more expressive types, but for the price of being
painfully verbose. Modules form a separate language layered on
top of the core. Effectively, ML is two languages in one.

This stratification makes sense from a historical perspective.
Modules were introduced for programming-in-the-large, when the
core language already existed. The dependent type machinery that
was the central innovation of the original module design was alien
to the core language, and could not have been integrated easily.

However, we have since discovered that dependent types are not
actually necessary to explain modules. In particular, Russo [26, 28]
demonstrated that module types can be readily expressed using
only System-F-style quantification. The F-ing modules approach
later showed that the entire ML module system can in fact be
understood as a form of syntactic sugar over System Fω [25].

Meanwhile, the second-class nature of modules has increasingly
been perceived as a practical limitation. The standard example
being that it is not possible to select modules at runtime:

module Table = if size > threshold then HashMap else TreeMap

A definition like this, where the choice of an implementation is
dependent on dynamics, is entirely natural in object-oriented lan-
guages. Yet, it is not expressible with ordinary ML modules. What
a shame!

1.1 Packaged Modules
It comes to no surprise, then, that various proposals have been
made (and implemented) that enrich ML modules with the ability
to package them up as first-class values [27, 22, 6, 25, 7]. Such
packaged modules address the most imminent needs, but they are
not to be confused with truly first-class modules. They require
explicit injection into and projection from first-class core values,
accompanied by heavy annotations. For example, in OCaml 4 the
above example would have to be written as follows:

module Table = (val (if size > threshold
then (module HashMap : MAP)
else (module TreeMap : MAP))) : MAP)

which, arguably, is neither natural nor pretty. Packaged modules
have limited expressiveness as well. In particular, type sharing with
a packaged module is only possible via a detour through core-level
polymorphism, such as in:

f : (module S with type t = ’a)→ (module S with type t = ’a)→ ’a

(where t is an abstract type in S). In contrast, with proper modules,
the same sharing could be expressed as

f : (X : S) → (S with type t = X.t) → X.t

1 2015/6/18

Because core-level polymorphism is first-order, this approach
cannot express type sharing between type constructors – a com-
plaint that has come up several times on the OCaml mailing list;
for example, if one were to abstract over a monad:

map : (module MONAD with type ’a t = ?) → (’a → ’b) → ? → ?

There is nothing that can be put in place of the ?’s to complete this
function signature. The programmer is forced to either use weaker
types (if possible at all), or drop the use of packaged modules and
lift the function (and potentially a lot of downstream code) to the
functor level – which not only is very inconvenient, it also severely
restricts the possible computational behaviour of such code. One
could imagine addressing this particular limitation by introducing
higher-kinded polymorphism into the ML core. But with such an
extension type inference would require higher-order unification and
hence become undecidable – unless accompanied by significant
restrictions that are likely to defeat this example (or others).

1.2 First-Class Modules
Can we overcome this situation and make modules more equal
citizens of the language? The answer from the literature has been:
no, because first-class modules make type-checking undecidable
and type inference infeasible.

The most relevant work is Harper & Lillibridge’s calculus
of translucent sums [9] (a precursor of later work on singleton
types [31]). It can be viewed as an idealised functional language
that allows types as components of (dependent) records, so that
they can express modules. In the type of such a record, individual
type members can occur as either transparent or opaque (hence,
translucent), which is the defining feature of ML module typing.

Harper & Lillibrige prove that type-checking this language is
undecidable. Their result applies to any language that has (a) con-
travariant functions, (b) both transparent and opaque types, and (c)
allows opaque types to be subtyped with arbitrary transparent types.
The latter feature usually manifests in a subtyping rule like

{D1[τ/t]} ≤ {D2[τ/t]}
{type t=τ ;D1} ≤ {type t;D2}

FORGET

which is, in some variation, at the heart of every definition of signa-
ture matching. In the premise the concrete type τ is substituted for
the abstract t. Obviously, this rule is not inductive. The substitution
can arbitrarily grow the types, and thus potentially require infinite
derivations. A concrete example triggering non-termination is the
following, adapted from Harper & Lillibridge’s paper [9]:

type T = {type A; f : A → ()}
type U = {type A; f : (T where type A = A) → ()}
type V = T where type A = U
g (X : V) = X : U (* V ≤ U ? *)

Checking V ≤ U would match type A with type A=U, substitut-
ing U for A accordingly, and then requires checking that the types
of f are in a subtyping relation – which contravariantly requires
checking that (T where type A = A)[U/A] ≤ A[U/A], but that
is the same as the V ≤ U we wanted to check in the first place.

In fewer words, signature matching is no longer decidable when
module types can be abstracted over, which is the case if module
types are simply collapsed into ordinary types. It also arises if
“abstract signatures” are added to the language, as in OCaml, where
the same divergent example can be constructed on the module type
level alone.

Some may consider decidability a rather theoretical concern.
However, there also is the – quite practical – issue that the introduc-
tion of signature matching into the core language makes ML-style
type inference impossible. Obviously, Milner’s algorithmW [18] is
far too weak to handle dependent types. Moreover, modules intro-
duce subtyping, which breaks unification as the basic algorithmic

tool for solving type constraints. And while inference algorithms
for subtyping exist, they have much less satisfactory properties than
our beloved Hindley/Milner sweet spot.

Worse, module types do not even form a lattice under subtyping:

f1 : {type t a; x : t int} → int
f2 : {type t a; x : int} → int
g = if condition then f1 else f2

There are at least two possible types for g:

g : {type t a = int; x : int} → int
g : {type t a = a; x : int} → int

Neither is more specific than the other, so no least upper bound
exists. Consequently, annotations are necessary to regain principal
types for constructs like conditionals, in order to restore any hope
for compositional type checking, let alone inference.

1.3 F-ing Modules
In our work on F-ing modules with Russo & Dreyer [25] we have
demonstrated that ML modules can be expressed and encoded
entirely in vanilla System F (or Fω , depending on the concrete core
language and the desired semantics for functors). Effectively, the F-
ing semantics defines a type-directed desugaring of module syntax
into System F types and terms, and inversely, interprets a stylised
subset of System F types as module signatures.

The core language that we assume in that paper is System F
(respectively, Fω) itself, leading to the seemingly paradoxical situ-
ation that the core language appears to have more expressive types
than the module language. That makes sense when considering that
the module translation rules manipulate the sublanguage of module
types in ways that would not generalise to arbitrary System F types.
In particular, the rules implicitly introduce and eliminate universal
and existential quantifiers, which is key to making modules a us-
able means of abstraction. But the process is guided by, and only
meaningful for, module syntax; likewise, the built-in subtyping re-
lation is only “complete” for the specific occurrences of quantifiers
in module types.

Nevertheless, the observation that modules are just sugar for
certain kinds of constructs that the core language can already ex-
press (even if less concisely), raises the question: what necessitates
modules to be second-class in that system?

1.4 1ML
The answer to that question is: very little! And the present paper is
motivated by exploring that answer.

In essence, the F-ing modules semantics reveals that the syntac-
tic stratification between ML core and module language is merely
a rather coarse means to enforce predicativity for module types:
it prevents abstract types themselves from being instantiated with
binders for abstract types. But this heavy syntactic restriction can
be replaced by a more surgical semantic restriction! It is enough
to employ a simple universe distinction between small and large
types (reminiscent of Harper & Mitchell’s XML [10]), and limit
the equivalent of the FORGET rule shown earlier to only allow small
types for subsitutition, which serves to exclude problematic quan-
tifiers.

That would settle decidability, but what about type inference?
Well, we can use the same distinction! A quick inspection of the
subtyping rules in the F-ing modules semantics reveals that they,
almost, degenerate to type equivalence when applied to small types
— the only exception being width subtyping on structures. If we
are willing to accept that inference is not going to be complete
for records (which it already isn’t in Standard ML), then a simple
restriction to inferring only small types is sufficient to make type
inference work almost as usual.

2 2015/6/18

In this spirit, this paper presents 1ML, an ML-dialect in which
modules are truly first-class values. The name is both short for “1st-
class module language” and a pun on the fact that it unifies core and
modules of ML into one language. Our contributions are as follows:

• We present a decidable type system for a language of first-class
modules that subsumes conventional second-class ML modules.
• We give an elaboration of this language into plain System Fω .
• We show how Damas/Milner-style type inference can be inte-

grated into such a language; it is incomplete, but only in ways
that are already present in existing ML implementations.
• We develop the basis for a practical design of an ML-like

language in which the distinction between core and modules
has been eliminated.

We see several benefits with this redesign: it produces a lan-
guage that is more expressive and concise, and at the same time,
more minimal and uniform. “Modules” become a natural means to
express all forms of (first-class) polymorphism, and can be freely
intermixed with “computational” code and data. Type inference
integrates in a rather seamless manner, reducing the need for ex-
plicit annotations to large types, module or not. Every program-
ming concept is derived from a small set of orthogonal constructs,
over which general and uniform syntactic sugar can be defined.

2. 1ML with Explicit Types
To separate concerns a little, we will start out by introducing
1MLex, a sublanguage of 1ML proper that is explicitly typed and
does not support any type inference. Its kernel syntax is given in
Figure 1. Let us take a little tour of 1MLex by way of examples.

Functional Core A major part of 1MLex consists of fairly con-
ventional functional language constructs. On the expression level,
as a representative for a base type, we have Booleans; in examples
that follow, we will often assume the presence of an integer type
and respective constructs as well. Then there are records, which
consist of a sequence of bindings. And of course, it wouldn’t be a
functional language without functions.

In a first approximation, these forms are reflected on the type
level as one would expect, except that for functions we allow
two forms of arrows, distinguishing pure function types (⇒) from
impure ones (→) (discussed later).

Like in the F-ing modules paper [25], most elimination forms in
the kernel syntax only allow variables as subexpressions. However,
the general expression forms are all definable as straightforward
syntactic sugar, as shown in the lower half of Figure 1. For example,

(fun (n : int) ⇒ n + n) 3

desugars into

let f = fun (n : int) ⇒ n + n; x = 3 in f x

and further into

{f = fun (n : int) ⇒ n + n; x = 3; body = f x}.body

This works because records actually behave like ML structures,
such that every bound identifier is in scope for later bindings –
which enables encoding let-expressions.

Also, notably, if-expressions require a type annotation in 1MLex.
As we will see, the type language subsumes module types, and as
discussed in Section 1.2 there wouldn’t generally be a unique least
upper bound otherwise. However, in Section 4 we show that this
annotation can usually be omitted in full 1ML.

Reified Types The core feature that makes 1MLex able to express
modules is the ability to embed types in a first-class manner: the ex-

pression type T reifies the type T as a value.1 Such an expression
has type type, and thereby can be abstracted over. For example,

id = fun (a : type) ⇒ fun (x : a) ⇒ x

defines a polymorphic identity function, similar to how it would
be written in dependent type theories. Note in particular that a
is a term variable, but it is used as a type in the annotation for
x. This is enabled by the “path” form E in the syntax of types,
which expresses the (implicit) projection of a type from a term,
provided this term has type type. Consequently, all variables are
term variables in 1ML, there is no separate notion of type variable.

More interestingly, a function can return types, too. Consider

pair = fun (a : type) ⇒ fun (b : type) ⇒ type {fst : a; snd : b}

which takes a type and returns a type, and effectively defines a type
constructor. Applied to a reified type it yields a reified type. Again,
the implicit projection from “paths” enables using this as a type:

second = fun (a : type)⇒ fun (b : type)⇒ fun (p : pair a b)⇒ p.snd

In this example, the whole of “pair a b” is a term of type type.
Figure 1 also defines a bit of syntactic sugar to make function

and type definitions look more like in traditional ML. For example,
the previous functions could equivalently be written as

id a (x : a) = x
type pair a b = {fst : a; snd : b}
second a b (p : pair a b) = p.snd

It may seem surprising that we can just reify types as first-class
values. But reified types (or “atomic type modules”) have been
common in module calculi for a long time [16, 6, 24, 25]. We are
merely making them available in the source language directly. For
the most part, this is just a notational simplification over what first-
class modules already offer: instead of having to define a spurious
module T = {type t = int} : {type t} and then refer to T.t, we
allow injecting types into modules (i.e., values) anonymously, with-
out wrapping them into a structure; thus t = (type int) : type,
which can be referred to as just t.

Translucency The type type allows classifying types abstractly:
given a value of type type, nothing is known about what type
it is. But for modular programming it is essential that types can
selectively be specified transparently, which enables expressing the
vital concept of type sharing [12].

As a simple example, consider these type aliases:

type size = int
type pair a b = {fst : a; snd : b}

According to the idea of translucency, the variables defined by these
definitions can be classified in one of two ways. Either opaquely:

size : type
pair : (a : type) ⇒ (b : type) ⇒ type

Or transparently:

size : (= type int)
pair : (a : type) ⇒ (b : type) ⇒ (= type {fst : a; snd : b})

The latter use a variant of singleton types [31, 6] to reveal the
definitions: a type of the form “=E” is inhabited only by values
that are “structurally equivalent” to E, in particular, with respect to
parts of type type. It allows the type system to infer, for example,
that the application pair size size is equivalent to the (reified) type

1 Ideally, “type T ” should be written just “T ”, like in dependently typed
systems. However, that would create various syntactic ambiguities, e.g.
for phrases like “{}”, which could only be avoided by moving to a more
artificial syntax for types themselves. Nevertheless, we at least allow writing
“E T ” for the application “E (typeT)” if T unambiguously is a type.

3 2015/6/18

(identifiers) X
(types) T ::= E | bool | {D} | (X:T)⇒→T | type | =E | T where (.X:T)
(declarations) D ::= X :T | include T |D;D | ε
(expressions) E ::= X | true | false | if X then E else E:T | {B} | E.X | fun (X:T)⇒E |XX | type T |X:>T
(bindings) B ::= X=E | include E | B;B | ε

(types)
let B in T := {B;X= type T}.X
T1
⇒→T2 := (X:T1)⇒→T2

T where (.X P=E) := T where (.X:P ⇒ (=E))
T where (type .X P=T ′) := T where (.X:P ⇒ (= type T ′))

(declarations)
local B inD := include (let B in {D})
X P :T := X :P ⇒T
X P=E := X :P ⇒ (=E)
typeX P := X :P ⇒ type
typeX P=T := X :P ⇒ (= type T)

where: (parameter) P ::= (X:T) with abbreviation X := (X: type)

(expressions)
let B in E := {B;X=E}.X
if E1 then E2 else E3:T := letX=E1 in if X then E2 else E3:T
E1 E2 := letX1=E1; X2=E2 inX1 X2

E T := E (typeT) (if T unambiguous)
E :T := (fun (X:T)⇒X)E
E :>T := letX=E inX :>T
funP ⇒ E := fun P ⇒E

(bindings)
local B in B′ := include (let B in {B′})
X P :T ′ :>T ′′=E := X = funP ⇒ E :T ′ :>T ′′

typeX P=T := X = funP ⇒ type T

(Identifiers X only occurring on the right-hand side are considered fresh)

Figure 1. 1MLex syntax and syntactic abbreviations

{fst : int; snd : int}. A type =E is a subtype of the type of E
itself, and consequently, transparent classifications define subtypes
of opaque ones, which is the crux of ML signature matching.

Translucent types usually occur as part of module type declara-
tions, where 1ML can abbreviate the above to the more familiar
type size
type pair a b

or, respectively, type size = int
type pair a b = {fst : a; snd : b}

i.e., as in ML, transparent declarations look just like definitions.
Singletons can be formed over arbitrary values. This gives the

ability to express module sharing and aliases. In the basic seman-
tics described in this paper, this is effectively a shorthand for shar-
ing all types contained in the module (including those defined in-
side transparent functors, see below). We leave the extension to full
value equivalence (including primitive types like Booleans), as in
our F-ing semantics for applicative functors [25], to future work.

Functors Returning to the 1ML grammar, the remaining con-
structs of the language are typical for ML modules, although they
are perhaps a bit more general than what is usually seen. Let us
explain them using an example that demonstrates that our language
can readily express “real” modules as well. Here is the (unavoid-
able, it seems) functor that defines a simple map ADT:

type EQ =
{

type t;
eq : t → t → bool
};
type MAP =
{

type key;
type map a;
empty a : map a;
add a : key → a → map a → map a;
lookup a : key → map a → opt a
};
Map (Key : EQ) :> MAP where (type .key = Key.t) =
{

type key = Key.t;
type map a = key → opt a;
empty a = fun (k : key) ⇒ none a;
lookup a (k : key) (m : map a) = m k;

add a (k : key) (v : a) (m : map a) =
fun (x : key) ⇒ if Key.eq x k then some a v else m x : opt a

}

The record type EQ amounts to a module signature, since it con-
tains an abstract type component t. It is referred to in the type of eq,
which shows that record types are seemingly “dependent”: like for
terms, earlier components are in scope for later components – the
key insight of the F-ing approach is that this dependency is benign,
however, and can be translated away, as we will see in Section 3.

Similarly, MAP defines a signature with abstract key and map
types. Note how type parameters on the left-hand side conve-
niently and uniformly generalise to value declarations, avoid-
ing the need for brittle implicit scoping rules like in conven-
tional ML: as shown in Figure 1, “empty a : map a” abbreviates
“empty : (a : type) ⇒ map a”, in a generalisation of the syntax
for type specifications introduced earlier, where “type t a” desug-
ars into “t a : type” and then “t : (a : type) ⇒ type”.

The Map function is a functor: it takes a value of type EQ,
i.e., a module. From that it constructs a naive implementation of
maps. “X:>T ” is the usual sealing operator that opaquely ascribes
a type (i.e., signature) to a value (a.k.a. module). The type refine-
ment syntax “T where (type .X=T)” should be familiar from
ML, but here it actually is derived from a more general construct:
“T where (.X:U)” refines T ’s subcomponent at path .X to type
U , which can be any subtype of what’s declared by T . That form
subsumes module sharing as well as other forms of refinement.

Applicative vs. Generative In this paper, we stick to a relatively
simple semantics for functor-like functions, in which Map is gener-
ative [28, 4, 25]. That is, like in Standard ML, each application will
yield a fresh map ADT, because sealing occurs inside the functor:

M1 = Map IntEq;
M2 = Map IntEq;
m = M1.add int 7 M2.empty (* ill-typed: M1.map 6= M2.map *)

But as we saw earlier, type constructors like pair or map are
essentially functors, too! Sealing the body of the Map functor
hence implies higher-order sealing of the nested map “functor”, as
if performing map :> type ⇒ type. It is vital that the resulting
functor has applicative semantics [15, 25], so that

4 2015/6/18

type map a = M1.map a;
type t = map int;
type u = map int

yields t = u, as one would expect from a proper type constructor.
We hence need applicative functors as well. To keep things sim-

ple, we restrict ourselves to the simplest possible semantics in this
paper, in which we distinguish between pure (⇒, i.e. applicative)
and impure (→, i.e. generative) function types, but sealing is al-
ways impure (or strong [6]). That is, sealing inside a functor always
makes it generative. The only way to produce an applicative functor
is by sealing a (fully transparent) functor as a whole, with applica-
tive functor type, as for the map type constructor above. Given:

F = (fun (a : type) ⇒ type {x : a}) :> type ⇒ type
G = (fun (a : type) ⇒ type {x : a}) :> type → type
H = fun (a : type) ⇒ (type {x : a} :> type)
J = G :> type⇒ type (* ill-typed! *)

F is an applicative functor, such that F int = F int. G and H on the
other hand are generative functors; the former because it is sealed
with impure function type, the latter because sealing occurs inside
its body. Consequently, G int or H int are impure expressions and
invalid as type paths (though it is fine to bind their result to a name,
e.g., “type w = G int”, and use the constant w as a type). Lastly,
J is ill-typed, because applicative functor types are subtypes of
generative ones, but not the other way round.

This semantics for applicative functors (which is very similar to
the applicative functors of Shao [30]) is somewhat limited, but just
enough to encode sealing over type constructors and hence recover
the ability to express type definitions as in conventional ML. An
extension of 1ML to applicative functors with pure sealing à la F-
ing modules [25] is given in the Technical Appendix [23].

The purity distinction would naturally extend to other relevant
effects, such as state. For example, the assignment operator :=
would need to be typed as impure (because there is no sound
elaboration for it otherwise), while other operators, such as +,
could be pure. However, we do not explore that space further here,
and conservatively treat all “core-like” functions as impure for now.

Higher Polymorphism So far, we have only shown how 1ML
recovers constructs well-known from ML. As a first example of
something that cannot directly be expressed in conventional ML,
consider first-class polymorphic arguments:

f (id : (a : type) ⇒ a → a) = {x = id int 5; y = id bool true}

Similarly, existential types are directly expressible:

type SHAPE = {type t; area : t → float; v : t}
volume (height : int) (x : SHAPE) = height * x.area (x.v)

SHAPE can either be read as a module signature or an existential
type, both are indistinguishable. The function volume is agnostic
about the actual type of the shape it is given.

It turns out that the previous examples can still be expressed
with packaged modules (Section 1.1). But now consider:

type COLL c =
{
type key;
type val;
empty : c;
add : c → key → val → c;
lookup : c → key → opt val;
keys : c → list key
};
entries c (C : COLL c) (xs : c) : list (C.key × C.val) = ...

COLL amounts to a parameterised signature, and is akin to a
Haskell-style type class [34]. It contains two abstract type spec-
ifications, which are known as associated types in the type class

literature (or in C++ land). The function entries is parameterised
over a corresponding module C – an (explicit) type class instance
if you want. Its result type depends directly on C’s definition of the
associated types. Such a dependency can be expressed in ML on
the module level, but not at the core level.2

Moving to higher kinds, things become even more interesting:

type MONAD (m : type ⇒ type) =
{

return a : a → m a;
bind a b : m a → (a → m b) → m b
};
map a b (m : type⇒ type) (M : MONAD m) (f : a→ b) (mx : m a) =

M.bind a b mx (fun (x : a) ⇒ M.return b (f x)) (* : m b *)

Here, MONAD is again akin to a type class, but over a type
constructor. As explained in Section 1.1, this kind of polymorphism
cannot be expressed even in MLs with packaged modules.

Computed Modules Just for completeness, we should mention
that the motivating example from Section 1 can of course be written
(almost) as is in 1MLex:

Table = if size > threshold then HashMap else TreeMap : MAP

The only minor nuisance is the need to annotate the type of the
conditional. As explained earlier, the annotation is necessary in
general to achieve unique types, but can usually be inferred once
we add inference to the mix (Section 4).

Predicativity What is the restriction we employ to maintain de-
cidability? It is simple: during subtyping (a.k.a. signature match-
ing) the type type can only be matched by small types, which
are those that do not themselves contain the type type; or in other
words, monomorphic types. Small types thus exclude first-class ab-
stract types, actual functors (functions taking type parameters), and
type constructors (which are just functors). For example, all of the
following define large types:
type T1 = type;
type T2 = {type u};
type T3 = {type u = T2};

type T4 = (x : {}) → type;
type T5 = (a : type) ⇒ {};
type T6 = {type u a = bool};

None of these are expressible as type expressions in conventional
ML, and vice versa, all ML type expressions materialise as small
types in 1ML, so nothing is lost in comparison.

The restriction on subtyping affects annotations, parameterisa-
tion over types, and the formation of abstract types. For example,
for all of the above Ti, all of the following definitions are ill-typed:

type U = pair Ti Ti; (* error *)
A = (type Ti) : type; (* error *)
B = {type u = Ti} :> {type u}; (* error *)
C = if b then Ti else int : type (* error *)

Notably, the case A with T1 literally implies type type 6 : type
(although type type itself is a well-formed expression!). The main
challenge with first-class modules is preventing such a type:type
situation, and the separation into a small universe (denoted by
type) and a large one (for which no syntax exists) achieves that.

A transparent type is small as long as it reveals a small type:

type T′1 = (= type int);
type T′2 = {type u = int}

would not cause an error when inserted into the above definitions.

2 In OCaml 4, this example can be approximated with heavy fibration:

module type COLL = sig type coll type key type val ... end
let entries (type c) (type k) (type v)

(module C : COLL with
type coll = c and type key = k and type value = v)

(xs : c) : (k * v) list = ...

5 2015/6/18

Recursion The 1MLex syntax we give in Figure 1 omits a couple
of constructs that one can rightfully expect from any serious ML
contender: in particular, there is no form of recursion, neither for
terms nor for types. It turns out that those are largely orthogonal to
the overall design of 1ML, so we only sketch them here.

ML-style recursive functions can be added simply by throwing
in a primitive polymorphic fixpoint operator

fix a b : (a → b) → (a → b)

plus perhaps some suitable syntactic sugar:

recX Y (Z:T) :U=E :=
X = funY ⇒ fixT U (fun(X:(Z:T)→T ′)⇒ fun(Z:T)⇒ E)

Given an appropriate fixpoint operator, this generalises to mutually
recursive functions in the usual ways. Note how the need to specify
the result type b (respectively, U) prevents using the operator to
construct transparent recursive types, because U has no way of
referring to the result of the fixpoint. Moreover, fix yields an impure
function, so even an attempt to define an abstract type recursively,

rec stream (a : type) : type = type {head : a; tail : stream a}

won’t type-check, because stream wouldn’t be an applicative func-
tor, and so the term stream a on the right-hand side is not a valid
type — fortunately, because there would be no way to translate such
a definition into System Fω with a conventional fixpoint operator.

Recursive (data)types have to be added separately. One ap-
proach, that has been used by Harper & Stone’s type-theoretic ac-
count of Standard ML [13], is to interpret a recursive datatype like

datatype t = A | B of T

as a module defining a primitive ADT with the signature

{type t; A : t; B : T ⇒ t; expose a : ({} → a)⇒ (T → a)⇒ t→ a}

where expose is a case-operator accessed by pattern matching
compilation. We refer to [13] for more details on this approach.
There is one caveat, though: datatypes expressed as ADTs require
sealing. With the simple system presented in this paper, they hence
could not be defined inside applicative functors. However, this
limitation is removed by the aforementioned generalisation to pure
sealing described in the Technical Appendix [23].

Impredicativity Reloaded Predicativity is a severe restriction.
Can we enable impredicative type abstraction without breaking de-
cidability? Yes we can. One possibility is the usual trick of piggy-
backing datatypes: we can allow their data constructors to have
large parameters. Because datatypes are nominal in ML, impred-
icativity is “hidden away” and does not interfere with subtyping.

Structural impredicative types are also possible, as long as large
types are injected into the small universe explicitly, by way of
a special type, say, “wrapT ”. The gist of this approach is that
subtyping does not extend to such wrapped types. It is an easy
extension, the Technical Appendix [23] gives the details.

3. Type System and Elaboration
So much for leisure, now for work. The general recipe for 1MLex

is simple: take the semantics from F-ing modules [25], collapse the
levels of modules and core, and impose the predicativity restriction
needed to maintain decidability. This requires surprisingly few
changes to the whole system. Unfortunately, space does not permit
explaining all of the F-ing semantics in detail, so we encourage the
reader to refer to [25] (mostly Section 4) for background, and will
focus primarily on the differences and novelties in what follows.

3.1 Internal Language
System Fω The semantics is defined by elaborating 1MLex types
and terms into types and terms of (call-by-value, impredicative)

(kinds) κ ::= Ω | κ→ κ
(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ |

λα:κ.τ | τ τ
(terms) e, f ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ |

pack 〈τ, e〉τ | unpack 〈α, x〉=e in e

(environ’s) Γ ::= · | Γ, α:κ | Γ, x:τ

Figure 2. Syntax of Fω

(abstracted) Ξ ::= ∃α.Σ
(large) Σ ::= π | bool | [= Ξ] | {l:Σ} | ∀α.Σ→ι Ξ
(small) σ ::= π | bool | [= σ] | {l:σ} | σ →I σ
(paths) π ::= α | π σ
(purity) ι ::= P | I

Desugarings into Fω:

(types)
[= τ] := {typ : τ → {}}
τ1 →l τ2 := τ1 → {l : τ2}

(terms)
[τ] := {typ = λx:τ.{}}
λlx:τ.e := λx:τ.{l : e}

Notation: ι ≤ ι ι∨ ι := ι ι(Σ) = P
P ≤ I P∨ I := I ∨ P := I ι(∃αα.Σ) = I

τ .l := τ

{l:τ, ...}.l := τ.l
′

τ [.l=τ2] := τ2
{l:τ, ...}[.l=τ2] := {l:τ [.l

′
=τ2], ...}

(l = ε)

(l = l.l
′
)

Figure 3. Semantic Types

System Fω , the higher-order polymorphic λ-calculus [1], extended
with simple record types (Figure 2). The semantics is completely
standard; we omit it here and reuse the formulation from [25]. The
only point of note is that it allows term (but not type) variables in
the environment Γ to be shadowed without α-renaming, which is
convenient for translating bindings.

We write Γ ` e : τ for the Fω typing judgement, and let e ↪→ e′

denote (one-step) reduction. Then System Fω is well-known to
enjoy the standard soundness properties:

THEOREM 3.1 (Preservation).
If · ` e : τ and e ↪→ e′, then · ` e′ : τ .

THEOREM 3.2 (Progress).
If · ` e : τ and e is not a value, then e ↪→ e′ for some e′.

To establish soundness of 1ML it suffices to ensure that elaboration
always produces well-typed Fω terms (Section 3.3).

We assume obvious encodings of let-expressions and n-ary
universal and existential types in Fω . To ease notation we often
drop type annotations from let, pack, and unpack where clear from
context. We will also omit kind annotations on type variables, and
where necessary, use the notation κα to refer to the kind implicitly
associated with α.

Semantic Types Elaboration translates 1MLex types directly into
“equivalent” System Fω types. The shape of these semantic types
is given by the grammar in Figure 3.

The main magic of the elaboration is that it inserts appro-
priate quantifiers to bind abstract types. Following Mitchell &
Plotkin [20], abstract types are represented by existentials: an ab-
stracted type Ξ = ∃α.Σ quantifies over all the abstract types (i.e.,
components of type type) from the underlying concretised type
Σ, by naming them α. Inside Σ they can hence be represented as
transparent types, equal to those α’s.

6 2015/6/18

A sketch of the mapping between syntactic types T and seman-
tic types Ξ is as follows:

T ∃α.Σ
(= type T1) [= ∃α1.Σ1]

type ∃α.[= α]
{X1:T1;X2:T2} ∃α1α2.{X1:Σ1, X2:Σ2}

(X:T1) → T2 ∀α1.Σ1 →I ∃α2.Σ2

(X:T1) ⇒ T2 ∃α2.∀α1.Σ1 →P Σ2

A.t αA.t

F(M) αF() σM

Here, we assume that each constituent type Ti on the left-hand side
is recursively mapped to a corresponding ∃αi.Σi appearing on the
right-hand side.

Walking through these in turn, (transparent) reified types are
represented as [= Ξ], which is expressed in System F using a
simple coding trick [25] – cf. the desugaring of [= τ] and [τ]
given in Figure 3, assuming a reserved label “typ”. Because all
type constructors are represented as functors, we have no need for
reified types of higher kind (as was the case in [25]).

With all abstract types being named, they always appear as
transparent types [= α] as well, albeit quantified as necessary.

Records, no surprise, map to records. We assume an implicit in-
jection from 1ML identifiers X into both Fω variables x and labels
l, so we can conveniently treat any X as a variable or label. The
abstract type names from all record components (here, the α1 from
T1 and the α2 from T2) are collectively hoisted outside the record;
within, the components all have concretised types, respectively. In
particular, this makes α1 scope over Σ2, thereby allowing possible
dependencies of T2 on (abstract types from) T1 without requiring
actual dependent types.

Function types map to polymorphic functions in Fω . Being in
negative position, the existential quantifier for the abstract types
α1 from the parameter type Σ1 turns into a universal quantifier,
scoping over the whole type, and allowing the result type Σ2 to
refer to the parameter types. Like for records, this hoisting avoids
the need for dependent types. Functions are also annotated by a
simple effect ι, which distinguishes impure (→) from pure (⇒)
function types, and thus, generative from applicative functors.

Pure function types encode applicative semantics for the ab-
stract types they return by having their existential quantifiers α2

“lifted” over their parameters. To capture potential dependencies,
the α2 are skolemised over α1 [2, 28, 25]. That is, the kinds of α2

are of the form κα1 → κ for pure functors, which is where higher
kinds come into play. We impose the syntactic invariant that a pure
function type never has an existential quantifier right of the arrow.

Abstract types are denoted by their type variables – e.g. some
αA.t introduced for A.t – but may generally take the form of a se-
mantic path π if they have parameters. Parameters are (only) in-
troduced through pure function abstraction and the aforementioned
kind lifting that goes along with it. An abstract type that is the re-
sult of an application of a pure function (applicative functor, or type
constructor) F to a value (module) M becomes the application of a
higher-kinded type variable representing the constructor to the con-
crete types σM from the argument, corresponding to the abstract
types α1 in F’s parameter. Because we enforce predicativity, these
argument types have to be small. For example, the type constructor
map (Section 2) has semantic type ∀α.[= α] →P [= αmap(α)],
and the application map int translates to αmap(int).

The latter forms can appear in arbitrary combination: for in-
stance, an abstract type projected from a functor application,
G(M).t, would map to αG().t σM accordingly.

Figure 3 also defines the subgrammar of small types, which can-
not have quantifiers in them. Moreover, small functions are required
to be impure, which will simplify type inference (Section 5).

3.2 Elaboration
The complete elaboration rules for 1MLex are collected in Figure 4.
There is one judgement for each syntactic class, plus an auxiliary
judgement for subtyping. If you are merely interested in typing
1ML then you can ignore the greyed out parts “ e” in the rules
– they are concerned with the translation of terms, and are only
relevant to define the operational semantics of the language.

Types and Declarations The main job of the elaboration rules for
types is to name all abstract type components with type variables,
collect them, and bind them hoisted to an outermost existential (or
universal, in the case of functions) quantifier. The rules are mostly
identical to [25], except that type is a free-standing construct in-
stead of being tied to the syntax of bindings, and 1ML’s “where”
construct requires a slightly more general rule.

Rule TSING corresponds to rule S-LIKE in [25] and handles
”singleton” types. It simply infers the (unique) type Σ of the ex-
pression E. Note that this type is not allowed to have existential
quantifiers, i.e., E may not introduce local abstract types. All types
[= Ξ] occurring in Σ thus are transparent. As explained below, we
dropped the side condition for Σ to be explicit in this rule.

Expressions and Bindings The elaboration of expressions closely
follows the rules from the first part of [25], but adds the tracking of
purity as in Section 7 of that paper. However, to keep the current
paper simple, we left out the ability to perform pure sealing, or to
create pure functions around it. That avoids some of the notational
contortions necessary for the applicative functor semantics from
[25]. An extension of 1MLex with pure sealing can be found in the
Technical Appendix [23].

The only other non-editorial changes over [25] are that “type
T ” is now handled as a first-class value, no longer tied to bindings,
and that Booleans have been added as representatives of the core.

The rules collect all abstract types generated by an expression
(e.g. by sealing or by functor application) into an existential pack-
age. This requires repeated unpacking and repacking of existentials
created by constituent expressions. Moreover, the sequencing rule
BSEQ combines two (n-ary) existentials into one.

It is an invariant of the expression elaboration judgement that
ι = I if Ξ is not a concrete type Σ – i.e., abstract type “generation”
is impure. Without this invariant, rule EFUN might form an invalid
function type that is marked pure but yet has an inner existential
quantifier (i.e., is “generative”). To maintain the invariant, both
sealing (rule ESEAL) and conditionals (rule EIF) have to be deemed
impure if they generate abstract types – enforced by the notation
ι(Ξ) defined in Figure 3. In that sense, our notion of purity actually
corresponds to the stronger property of valuability in the parlance
of Dreyer [4], which also implies phase separation, i.e., the ability
to separate static type information from dynamic computation, key
to avoiding the need for dependent types.

Subtyping The subtyping judgement is defined on semantic
types. It generates a coercion function f as computational evidence
of the subtyping relation. The domain of that function always is the
left-hand type Ξ′; to avoid clutter, we omit its explicit annotation
from the λ-terms produced by the rules. The rules mostly follow
the structure from [25], merely adding a straightforward rule for
abstract type paths π, which now may occur as “module types”.

However, we make one structural change: instead of guess-
ing the substitution for the right-hand side’s abstract types non-
deterministically in a separate rule (rule U-MATCH in [25]), the
current formulation looks them up algorithmically as it goes, using
the new rule SFORGET to match an individual abstract type. The
reason for this change is merely a technical one: it eliminates the
need for any significant meta-theory about decidability, which was
somewhat non-trivial before, at least with applicative functors.

7 2015/6/18

Types Γ ` T Ξ
Γ ` E :P [= Ξ] e

Γ ` E Ξ
TPATH

κα = Ω

Γ ` type ∃α.[= α]
TTYPE

Γ ` bool bool
TBOOL

Γ ` D Ξ

Γ ` {D} Ξ
TSTR

Γ ` T1 ∃α1.Σ1

Γ, α1, X:Σ1 ` T2 ∃α2.Σ2

Γ ` (X:T1)→T2 ∀α1.Σ1 →I ∃α2.Σ2
TFUN

Γ ` T1 ∃α1.Σ1

Γ, α1, X:Σ1 ` T2 ∃α2.Σ2 κα′
2

= κα1→ κα2

Γ ` (X:T1)⇒T2 ∃α′2.∀α1.Σ1 →P Σ2[α′2 α1/α2]
TPFUN

Γ ` E :P Σ e

Γ ` (=E) Σ
TSING

Γ ` T1 ∃α1.Σ1 α1 = α11] α12

Γ ` T2 ∃α2.Σ2 Γ, α11, α2 ` Σ2 ≤α12 Σ1.X δ; f

Γ ` T1 where (.X:T2) ∃α11α2.δΣ1[.X=Σ2]
TWHERE

Declarations Γ ` D ΞΓ ` T ∃α.Σ
Γ ` X:T ∃α.{X:Σ}DVAR

Γ ` T ∃α.{X:Σ}
Γ ` include T ∃α.{X:Σ}

DINCL

Γ ` D1 ∃α1.{X1:Σ1}
Γ, α1, X1:Σ1 ` D2 ∃α2.{X2:Σ2} X1 ∩X2 = ∅

Γ ` D1;D2 ∃α1α2.{X1:Σ1, X2:Σ2}
DSEQ

Γ ` ε {}DEMPTY

Expressions Γ ` E :ι Ξ eΓ(X) = Σ

Γ ` X :P Σ X
EVAR

Γ ` T Ξ

Γ ` type T :P [= Ξ] [Ξ]
ETYPE

Γ ` true :P bool true
ETRUE

Γ ` false :P bool false
EFALSE

Γ ` X :P bool e Γ ` E1 :ι1 Ξ1 e1 Γ ` Ξ1 ≤ Ξ f1

Γ ` T Ξ Γ ` E2 :ι2 Ξ2 e2 Γ ` Ξ2 ≤ Ξ f2

Γ ` if X then E1 else E2 :T :ι1∨ι2∨ι(Ξ) Ξ if e then f1 e1 else f2 e2
EIF

Γ ` B :ι Ξ e

Γ ` {B} :ι Ξ e
ESTR

Γ ` E :ι ∃α.{X ′:Σ′} e X:Σ ∈ X ′:Σ′
Γ ` E.X :ι ∃α.Σ unpack 〈α, y〉 = e in pack 〈α, y.X〉EDOT

Γ ` T ∃α.Σ Γ, α,X:Σ ` E :ι Ξ e

Γ ` fun (X:T)⇒E :P ∀α.Σ→ι Ξ λα.λιX:Σ.e
EFUN

Γ ` X1 :P ∀α.Σ1 →ι Ξ e1

Γ ` X2 :P Σ2 e2 Γ ` Σ2 ≤α Σ1 δ; f

Γ ` X1 X2 :ι δΞ (e1 (δα) (f e2)).ι
EAPP

Γ ` X :P Σ1 e Γ ` T ∃α.Σ2 Γ ` Σ1 ≤α Σ2 δ; f

Γ ` X:>T :ι(∃α.Σ2) ∃α.Σ2 pack 〈δα, f e〉 ESEAL

Bindings Γ ` B :ι Ξ e

Γ ` E :ι ∃α.Σ e

Γ ` X=E :ι ∃α.{X:Σ} unpack 〈α, x〉 = e in pack 〈α, {X=x}〉BVAR
Γ ` E :ι ∃α.{X:Σ} e

Γ ` include E :ι ∃α.{X:Σ} e
BINCL

Γ ` B1 :ι1 ∃α1.{X1:Σ1} e1 X
′
1 = X1 −X2

Γ, α1, X1:Σ1 ` B2 :ι2 ∃α2.{X2:Σ2} e2 X ′1:Σ′1 ⊆ X1:Σ1

Γ ` B1;B2 :ι1∨ι2 ∃α1α2.{X ′1:Σ′1, X2:Σ2} unpack 〈α1, y1〉 = e1 in let X1 = y1.X1 in
unpack 〈α2, y2〉 = e2 in
pack 〈α1α2, {X ′1 = y1.X ′1, X2 = y2.X2}〉

BSEQ
Γ ` ε :P {} {}

BEMPTY

Subtyping Γ ` Ξ′ ≤π Ξ δ; fΓ ` Ξ ≤ Ξ′ f := Γ ` Ξ ≤ε Ξ′ id; f

Γ ` π ≤ π λx.x
SPATH

Γ ` bool ≤ bool λx.x
SBOOL

Γ ` Ξ′ ≤ Ξ f Γ ` Ξ ≤ Ξ′ f ′

Γ ` [= Ξ′] ≤ [= Ξ] λx.[Ξ]
STYPE

π = αα′

Γ ` [= σ] ≤π [= π] [λα′.σ/α];λx.x
SFORGET

Γ ` {l:Σ′} ≤ {} λx.{}
SEMPTY

Γ ` Σ′1 ≤π1 Σ1 δ1; f1

Γ ` {l′:Σ′} ≤π2 {l: δ1Σ} δ2; f2 δ2Σ1 = Σ1

Γ ` {l1:Σ′1, l′:Σ′} ≤π1π2 {l1:Σ1, l:Σ} δ1δ2;λx.{l1=f1(x.l1), l=(f2 x).l}
SSTR

Γ, α ` Σ ≤α′ Σ′ δ1; f1 ι′ ≤ ι
Γ, α ` δ1Ξ′ ≤πα Ξ δ2; f2 δ2Σ = Σ

Γ ` (∀α′.Σ′ →ι′ Ξ′) ≤π (∀α.Σ→ι Ξ)
 δ2;λx. λα. λιy:Σ. f2 ((x (δ1α

′) (f1 y)).ι′)

SFUN
Γ, α′ ` Σ′ ≤α Σ δ; f α′α 6= ε

Γ ` ∃α′.Σ′ ≤ ∃α.Σ λx. unpack 〈α′, y〉 = x in pack 〈δα, f y〉
SABS

Figure 4. Elaboration of 1MLex

8 2015/6/18

To this end, the judgement is indexed by a vector π of abstract
paths that correspond to the abstract types from the right-hand Ξ.
The counterparts of those types have to be looked up in the left-
hand Ξ′, which happens one at a time in rule SFORGET. And
that’s where the predicativity restriction materialises: the rule only
allows a small type on the left. Lookup produces a substitution
δ whose domain corresponds to the root variables of the abstract
paths π. Normally, each of π is just a plain abstract type variable
(which occur free in Ξ in this judgement). But in the formation
rule TPFUN for pure function types, lifting produces more complex
paths. So when subtyping goes inside a pure functor in rule SFUN,
the same abstract paths with skolem parameters have to be formed
for lookup, so that rule SFORGET can match them accordingly.

The move to deterministic subtyping allows us to drop the aux-
iliary notion of explicit types, which was present in [25] to ensure
that non-deterministic lookup can be made deterministic. There
is one side effect from dropping the “explicitness” side condition
from rule TSING, though: subtyping is no longer reflexive. There
are now “monster” types that cannot be matched, not even by them-
selves. For example, take {}→I ∃α.α, which is created by

(= (fun (x : {}) ⇒ ({type t = int; v = 0} :> {type t; v : t}).v))

and is not a subtype of itself (it only contains a use of the abstract
type α, no “binding” of the form [= α]; consequently, when recur-
sively matching ∃α′.α′ ≤ ∃α.α, rule SFORGET is never invoked
to introduce the necessary substitution [α′/α] of α by (the renamed
version of) itself). However, this does not break anything else, so
we make that simplification anyway – if desired, explicitness could
easily be revived.

3.3 Meta-Theory
It is relatively straightforward to verify that elaboration is correct:

PROPOSITION 3.3 (Correctness of 1MLex Elaboration).
Let Γ be a well-formed Fω environment.

1. If Γ ` T/D Ξ, then Γ ` Ξ : Ω.
2. If Γ ` E/B :ι Ξ e, then Γ ` e : Ξ, and if ι=P then Ξ=Σ.
3. If Γ ` Ξ′ ≤αα′ Ξ δ; f and Γ ` Ξ′ : Ω and Γ, α ` Ξ : Ω,

then dom(δ) = α and Γ ` δ : Γ, α and Γ ` f : Ξ′ → δΞ.

Together with the standard soundness result for Fω we can tell
that 1MLex is sound, i.e., a well-typed 1MLex program will either
diverge or terminate with a value of the right type:

THEOREM 3.4 (Soundness of 1MLex). If · ` E : Ξ e, then
either e ↑ or e ↪→∗ v such that · ` v : Ξ and v is a value.

More interestingly, the 1MLex type system is also decidable:

THEOREM 3.5 (Decidablity of 1MLex Elaboration).
All 1MLex elaboration judgements are decidable.

This is immediate for all but the subtyping judgement, since they
are syntax-directed and inductive, with no complicated side con-
ditions. The rules can be read directly as an inductive algorithm.
(In the case of where, it seems necessary to find a partitioning
α1 = α11]α12, but it is not hard to see that the subtyping premise
can only possibly succeed when picking α12 = fv(Σ1) ∩ α1.)

The only tricky judgement is subtyping. Although it is syntax-
directed as well, the rules are not actually inductive: some of their
premises apply a substitution δ to the inspected types. Alas, that is
exactly what can cause undecidability (see Section 1.2).

The restriction to substituting small types saves the day. We can
define a weight metric over semantic types such that a quantified
type variable has more weight than any possible substitution of
that variable with a small type. We can then show that the overall
weight of types involved decreases in all subtyping rules. For space
reasons, the details appear in the Technical Appendix [23].

4. Full 1ML
A language without type inference is not worth naming ML. Be-
cause that is so, Figure 5 shows the minimal extension to 1MLex

necessary to recover ML-style implicit polymorphism. Syntacti-
cally, there are merely two new forms of type expression.

First, “ ” stands for a type that is to be inferred from context.
The crucial restriction here is that this can only be a small type. This
fits nicely with the notion of a monotype in core ML, and prevents
the need to infer polymorphic types in an analogous manner.

On top of this new piece of kernel syntax we allow a type
annotation “: ” on a function parameter or conditional to be
omitted, thereby recovering the implicitly typed expression syntax
familiar from ML. (At the same time we drop the 1MLex sugar
interpreting an unannotated parameter as a type; we only keep that
interpretation in type declarations or bindings.)

Second, there is a new type of implicit function, distinguished
by a leading tick ’ (a choice that will become clear in a moment).
This corresponds to an ML-style polymorphic type. The parameter
has to be of type type, whose being small fits nicely with the fact
that ML can only abstract monotypes, and no type constructors. For
obvious reasons, an implicit function has to be pure. We write the
semantic type of implicit functions with an arrow→A, in order to
reuse notational convention. It is distinct from →ι, however, and
we do not consider A an actual effect; i.e., A is not included in ι.

As the name would suggest, there are no explicit introduction
or elimination forms for implicit functions. Instead, they are intro-
duced and eliminated implicitly. The respective typing rules (EGEN
and EINST) match common formulations of ML-style polymor-
phism [3]. Any pure expression can have its type generalised, which
is more liberal than ML’s value restriction [35] (recall that purity
also implies that no abstract types are produced).

Subtyping allows the implicit elimination of implicit functions
as well, via instantiation on the left, or skolemisation on the right
(rules SIMPLL and SIMPLR). This closely corresponds to ML’s
signature matching rules, which allow any value to be matched by a
value of more polymorphic type. However, this behaviour can now
be intermixed with proper “module” types. In particular, that means
that we allow looking up types from an implicit function, similar to
other pure functions. For example, the following subtyping holds,
by implicitly instantiating the parameter a with int:

’(a : type) ⇒ {type t = a; f : a → t} ≤ {type t; f : int → int}

With these few extensions, the Map functor from Section 2 can
now be written in 1ML very much like in traditional ML:

type MAP =
{
type key;
type map a;
empty ’a : map a;
lookup ’a : key → map a → opt a;
add ’a : key → a → map a → map a
};
Map (Key : EQ) :> MAP where (type .key = Key.t) =
{
type key = Key.t;
type map a = key → opt a;
empty = fun x ⇒ none;
lookup x m = m x;
add x y m = fun z ⇒ if Key.eq z x then some y else m z
}

The MAP signature here uses one last bit of syntactic sugar defined
in Figure 5, which is to allow implicit parameters on the left-hand
side of declarations, like we already do for explicit parameters (cf.
Figure 1), The tick becomes a pun on ML’s type variable syntax,
but without relying on brittle implicit scoping rules.

9 2015/6/18

Syntax

(types) T ::= . . . | | ’(X:type)⇒T

(expressions) if E1 then E2 else E3 := if E1 then E2 else E3:
funX⇒E := fun (X:)⇒E

(types) ’X ⇒ T := ’(X:type)⇒T

(declarations) X ’Y :T := X : ’(Y : type)⇒T
Semantic Types

(large signatures) Σ ::= . . . | ∀α.{} →A Σ

Types Γ ` T ΞΓ ` σ : Ω

Γ ` σ
TINFER

Γ, α,X:[= α] ` T Σ κα = Ω

Γ ` ’(X:type)⇒ T ∀α.{} →A Σ
TIMPL

Expressions Γ ` E :ι Ξ e

Γ, α ` E :P Σ e κα = Ω

Γ ` E :P ∀α.{} →A Σ λα.λAx:{}.eEGEN
Γ ` E :ι ∃α.∀α′.{} →A Σ e Γ, α ` σ : κα′

Γ ` E :ι ∃α.Σ[σ/α′] unpack 〈α, x〉 = e in pack 〈α, (xσ {}).A〉EINST

Subtyping Γ ` Ξ′ ≤π Ξ δ; f

Γ ` σ : κα′ Γ ` Σ′[σ/α′] ≤π Σ δ; f

Γ ` ∀α′.{} →A Σ′ ≤π Σ δ;λx. f ((xσ {}).A)
SIMPLL

Γ, α ` Σ′ ≤π Σ δ; f fv(δπ) 6 ∩ α
Γ ` Σ′ ≤π ∀α.{} →A Σ δ;λx. λα.λAy:{}.f x

SIMPLR

Figure 5. Extension to Full 1ML

Space reasons forbid more extensive examples, but it should
be clear from the rules that there is nothing preventing the use of
implicit functions as first-class values, given sufficient annotations
for their (large) types. For example:

(fun (id : ’a ⇒ a → a) ⇒ {x = id 3; y = id true}) (fun x ⇒ x)

The type of the argument expression is generalised implicitly and
matches the implicitly polymorphic parameter via subtyping.

5. Type Inference
With the additions from Figure 5 we have turned the deterministic
typing and elaboration judgements of 1MLex non-deterministic.
They have to guess types (in rules TINFER, EINST, SIMPLL) and
quantifiers (in rule EGEN). Moreover, we have decide when to
apply rules EGEN and EINST. Clearly, an algorithm is needed.

Fortunately, what’s going on is not fundamentally different from
core ML. Where core ML would require type equivalence (and type
inference would use unification), the 1ML rules require subtyping.

That may seem scary at first, but a closer inspection of the
subtyping rules reveals that, when applied to small types, subtyping
almost degenerates to type equivalence! The only exception is
width subtyping on records. The 1ML type system only promises
to infer small types, so we are not far away from conventional ML.
That is, we can still formulate an algorithm based on inference
variables (which we write υ) holding place for small types.

5.1 Algorithm
Figure 6 shows the essence of this algorithm, formulated via in-
ference rules. The basic idea is to modify the declarative typing
rules such that wherever they have to guess a (small) type, we sim-
ply introduce a (free) inference variable. Furthermore, the rules are
augmented with outputting a substitution θ for resolved inference
variables: all judgements have the form Γ `θ J , which, roughly,
implies the respective declarative judgement υ, θΓ ` θJ , where υ
binds the unresolved inference variables that still appear free in θΓ
or θJ . Notation is simplified by abbreviations of the form

Γ θ`θ′ J := θΓ `θ′′ θJ ∧ θ′ = θ′′ ◦ θ

where θJ is meant to apply θ toJ ’s “inputs”. It’s used to thread and
compose substitutions through multiple premises (e.g. rule IEIF).

There are two main complications, both due to the fact that,
unlike in old ML, small types can be intermixed with large ones.

First, it may be necessary to infer a small type from a large one
via subtyping. For example, we might encounter the inequation

∀α.[= α]→P [= α] ≤ υ

which can be solved just fine with υ = [= σ] →I [= σ] for
any σ; through contravariance, similar situations can arise with an
inference variable on the left. Because of this, it is not enough to
just consider the cases υ ≤ σ or σ ≤ υ for resolving υ. Instead,
when the subtyping algorithm hits υ ≤ Σ or Σ ≤ υ (rules ISRESL
and ISRESR, where Σ may or may not be small) it invokes the
auxiliary Resolution judgement Γ `θ υ ≈ Σ, which only resolves
υ so far as to match the shape of Σ and inserts fresh inference
variables for its subcomponents. After that, subtyping “tries again”.

Second, an inference variable υ can be introduced in the scope
of abstract types (i.e., regular type variables). In general, it would
be incorrect to resolve υ to a type containing type variables that are
not in scope for all occurrences of υ in a derivation. To prevent that,
each υ is associated with a set ∆υ of type variables that are known
to be in scope for υ everywhere. The set is verified when resolving
υ (see rule IRPATH in particular). The set also is propagated to
any other υ′ the original υ is unified with, by intersecting ∆υ′

with ∆υ – or more precisely, by introducing a new variable υ′′

with the intersected ∆υ′′ , and replacing both υ and υ′ with it (see
e.g. rule IRINFER); that way, we can treat ∆υ as a globally fixed
set for each υ, and do not need to maintain those sets separately.
Inference variables also have to be updated when type variables go
out of scope. That is achieved by employing the following notation
in rules locally extending Γ with type variables (we write undet(Ξ)
to denote the free inference variables of Ξ):

Γ; Γ′ θ`θ′ J := Γ,Γ′ θ`θ′′ J ∧ θ′ = [υ′/υ] ◦ θ′′
where υ = undet(θ′′J)

υ′ fresh with ∆υ′ = ∆υ ∩ dom(Γ)

The net effect is that all local α’s from Γ′ are removed from all
∆-sets of inference variable remaining after executing Γ,Γ′ ` J .
We omit θ in this notation when it is the identity.

Implicit functions work mostly like in ML. Like with let-
polymorphism, generalisation is deferred to the point where an
expression is bound – in this case, in rule IBPVAR. This works de-
spite 1ML’s first-class polymorphism, thanks to the desugaring into
a kernel syntax requiring named variables in most places (Figure 1).
Consider the example from the previous section:

10 2015/6/18

Types Γ `θ T Ξ
Γ `!

θ E :P [= Ξ]

Γ `θ E Ξ
ITPATH

υ fresh ∆υ = dom(Γ)

Γ `[] υ
ITINFER

Γ `[] type ∃α.[= α]
ITTYPE

Γ `θ E : Σ

Γ `θ (=E) Σ
ITSING

Γ `θ1 T1 ∃α1.Σ1

Γ;α1, X:Σ1 θ1`θ2 T2 ∃α2.Σ2 κα′
2

= κα1 → κα2

Γ `θ2 (X:T1)⇒T2 ∃α′2.∀α1.Σ1 →P Σ2[α′2 α1/α2]
ITPFUN

Γ;α,X:[= α] `θ T Σ κα = Ω

Γ `θ ’(X:type)⇒ T ∀α.{} →A Σ
ITIMPL

Expressions Γ `θ E :ι Ξ

Γ(X) = Σ

Γ `[] X :P Σ
IEVAR

Γ `!
θ0
X :P bool Γ θ0`θ1 E1 :ι1 Ξ1 Γ θ3`θ4 Ξ1 ≤ Ξ

Γ θ2`θ3 T Ξ Γ θ1`θ2 E2 :ι2 Ξ2 Γ θ4`θ5 Ξ2 ≤ Ξ

Γ `θ5 if X then E1 else E2 :T :ι1∨ι2∨ι(Ξ) Ξ
IEIF

Γ `!
θ E :ι ∃α.{X:Σ, X ′:Σ′}
Γ `θ E.X :ι ∃α.Σ

IEDOT

Γ `θ1 T ∃α.Σ Γ;α,X:Σ θ1`θ2 E :ι Ξ

Γ `θ2 fun (X:T)⇒E :P ∀α.Σ→ι Ξ
IEFUN

Γ `!
θ1
X1 :P ∀α.Σ1 →ι Ξ

Γ θ1`θ2X2 :P Σ2 Γ θ2`θ3 Σ2 ≤α Σ1 δ

Γ `θ3 X1 X2 :ι δΞ
IEAPP

Bindings Γ `θ B :ι ΞΓ `θ E :I ∃α.Σ
Γ `θ X=E :I ∃α.{X : Σ} IBVAR

Γ `θ E :P Σ υ = undet(θΣ)− undet(θΓ) κα = Ω

Γ `θ X=E :P {X : ∀α.{} →A Σ[α/υ]} IBPVAR

Subtyping Γ `θ Ξ ≤π Ξ′ δ

Γ `[] υ ≤ υ
ISREFL

Γ `!
θ υ ≈ Σ Γ θ`θ′ υ ≤ Σ

Γ `θ′ υ ≤ Σ
ISRESL

Γ `!
θ υ ≈ Σ′ Γ θ`θ′ Σ′ ≤ υ

Γ `θ′ Σ′ ≤ υ ISRESR

Γ, α `θ1 Σ ≤α′ Σ′ δ1 ι′ ≤ ι
Γ;α θ1`θ2 δ1Ξ′ ≤πα Ξ δ2 θ2δ2Σ = θ2Σ

Γ `θ2 (∀α′.Σ′ →ι′ Ξ′) ≤π (∀α.Σ→ι Ξ) δ2
ISFUN

Γ;α `θ Σ′ ≤α Σ δ α′α 6= ε

Γ `θ ∃α′.Σ′ ≤ ∃α.Σ
ISABS

υ fresh ∆υ = dom(Γ) Γ `θ Σ′[υ/α′] ≤π Σ δ

Γ `θ ∀α′.{} →A Σ′ ≤π Σ δ
ISIMPLL

Γ;α `θ Σ′ ≤π Σ δ; f α 6 ∩ fv(θδ)

Γ `θ Σ′ ≤π ∀α.{} →A Σ δ
ISIMPLR

Resolution Γ `θ υ ≈ ΣΓ `!
θ υ ≈ Σ := υ /∈ undet(Σ) ∧ Γ `θ υ ≈ Σ

υ′′ fresh ∆υ′′ = ∆υ ∩∆υ′

Γ `[υ′′/υ,υ′′/υ′] υ ≈ υ′
IRINFER

α ∈ ∆υ υ′ fresh ∆υ′ = ∆υ

Γ `[αυ′/υ] υ ≈ ασ
IRPATH

Γ `[bool/υ] υ ≈ bool
IRBOOL

υ′ fresh ∆υ′ = ∆υ

Γ `[[=υ′]/υ] υ ≈ [= Ξ]
IRTYPE

υ1, υ2 fresh ∆υ1 = ∆υ2 = ∆υ

Γ `[(υ1→Iυ2)/υ] υ ≈ ∀α.Σ→ι Ξ
IRFUN

Instantiation Γ `θ Ξ � Ξ′Γ `!
θ E :ι Ξ := Γ `θ E :ι Ξ′ ∧ Γ θ`θ′ Ξ′ � Ξ

Γ `θ Ξ � Ξ
INREFL

Γ;α `θ υ ≈ Σ

Γ `θ ∃α.υ � ∃α.Σ
INRES

υ fresh ∆υ = dom(Γ, α) Γ `θ ∃α.Σ[υ/α′] � ∃α.Σ′

Γ `θ ∃α.∀α′.{} →A Σ � ∃α.Σ′ INIMPL

Figure 6. Type Inference for 1ML (Excerpt)

(fun (id : ’a ⇒ a → a) ⇒ {x = id 3; y = id true}) (fun x ⇒ x)

Desugaring rewrites this application into an expression that has an
explicit binding for the argument (fun x ⇒ x). The same observa-
tions applies to other relevant forms. Hence, generalising bindings
in the kernel syntax is still enough.

Similarly, instantiation is deferred to rules corresponding to
elimination forms (e.g. IEIF, IEDOT, IEAPP, but also ITPATH).
There, the auxiliary Instantiation judgement is invoked (as part
of the notation Γ `!

θ J .). This does not only instantiate implicit
functions (possibly under existential binders), it also may resolve
inference variables to create a type whose shape matches the shape
that is expected by the invoking rule.

Instantiation can also happen implicitly as part of subtyping
(rule ISIMPLL), which covers the case where a polymorphic value
is matched against a monomorphic (or other polymorphic) parame-
ter. For example, ∀α1α2.{} →A α1 →I α2 ≤ ∀β.{} →A β →I β
will be checked by first applying ISIMPLR, turning the right type
monomorphic, and then instantiating the left with ISIMPLL, so that
the check is down to υ1 →I υ2 ≤ β →I β, unifying easily.

5.2 Incompleteness
There are a couple of sources of incompleteness in this algorithm:

Width subtyping Subtyping like υ ≤ {l:σ} does not determine
the shape of the record type υ: the set of labels can still vary.
Consequently, the Resolution judgement has no rule for structures –
instead a structure type must be determined by the previous context.

This is, in fact, similar to Standard ML [19], where record types
cannot be inferred either, and require type annotation. However,
SML implementations typically ensure that type inference is still
order-independent, i.e., the information may be supplied after the
point of use. They do so by employing a simple form of row
inference. A similar approach would be possible for 1ML, but
subtyping would still make more programs fail to type-check. For
the sake of presentation, we decided to err on the side of simplicity.

The real solution of course would be to incorporate not just row
inference but row polymorphism [21], so that width subtyping on
structures can be recast as universal and existential quantification.
We leave investigating such an extension for future work (though
we note that include would still represent a challenge).

11 2015/6/18

Type Scoping Tracking of the sets ∆υ is conservative: after leav-
ing the scope of a type variable α, we exclude any solution for
υ that would still involve α, even if υ only appears inside a type
binder for α. Consider, for example [5]:

G (x : int) = {M = {type t = int; v = x} :> {type t; v : t}; f = id id};
C = G 3;
x = C.f (C.M.v);

and assume id : ’(a : type) ⇒ a → a. Because id is impure, the
definition of f is impure, and its type cannot be generalised; more-
over, G is impure too. The algorithm will infer G’s type as

int→ ∃β.{M : {t : [= β], v : β}, f : υ →I υ}
with β /∈ ∆υ (because β goes out of scope the moment we bind it
with a local quantifier), and then generalises to

G : ∀α.{} →A int→ ∃β.{M : {t : [= β], v : β}, f : α→I α}
But its too late, the solution υ = β, which would make x well-
typed, is already precluded. When typing C, instantiating α with β
is not possible either, because β can only come into scope again
after having applied an argument for α already.

Although not well-known, this very problem is already present
in good old ML, as Dreyer & Blume point out [5]: existing type in-
ference implementations are incomplete, because combinations of
functors and the value restriction (like above) do not have principal
types. Interestingly, a variation of the solution suggested by Dreyer
& Blume (implicitly generalising the types of functors) is implied
by the 1ML typing rules: since functors are just functions, their
types can already be generalised. However, generalisation happens
outside the abstraction, which is more rigid than what they propose
(but which is not expressible in System Fω). Consequently, 1ML
can type some examples from their paper, but not all.

Purity Annotations Due to effect subtyping, a function type as
an upper bound does not determine the purity of a smaller type.
Technically, that does not affect completeness, because we defined
small types to only include impure functions: the resolution rule
IRFUN can always pick I. But arguably, that is cheating a little
by side-stepping the issue. In particular, it makes an extension of
the notion of (im)purity to other effects, as suggested in Section 2,
somewhat inconvenient, because pure function types could not be
inferred in parameter positions.

Again, the solution would be more polymorphism, in this case a
simple form of effect polymorphism [32]. That will be future work.

Despite these limitiations, we found 1ML inference quite usable.
In practice, MLs have long given up on complete type inference:
various limitations exist in both SML and OCaml (and the extended
language family including Haskell), necessitating type annotations
or declarations. In our limited experience with a prototype, 1ML is
not substantially worse, at least not when used in the same manner
as traditional ML. In fact, we conjecture that any SML program
not using features omitted from 1ML – but including both modules
and Damas/Milner polymorphism – can be directly transliterated
into 1ML without adding type annotations.

5.3 Metatheory
If the inference algorithm isn’t complete, then at least it is sound.
That is, we can show the following result:

THEOREM 5.1 (Correctness of 1ML Inference).
Let υ,Γ be a well-formed Fω environment.

1. If Γ `θ T/D Ξ, then υ′, θΓ ` T/D θΞ.
2. If Γ `θ E/B :ι Ξ e, then υ′, θΓ ` E/B :ι θΞ θe.
3. If Γ `θ Ξ′≤πΞ δ;f and υ,Γ ` Ξ′ : Ω and υ,Γ, α ` Ξ : Ω,

then υ′, θΓ ` θΞ′ ≤π θΞ θδ; θf .

THEOREM 5.2 (Termination of 1ML Inference).
All 1ML type inference judgements terminate.

We have to defer the details to the Technical Appendix [23].

6. Related Work
Packaged Modules The first concrete proposal for extending ML
with packaged modules was by Russo [27], and is implemented in
Moscow ML. Later work on type systems for modules routinely
included them [6, 4, 24, 25], and variations have been implemented
in other ML dialects, such as Alice ML [22] and OCaml [7].

To avoid soundness issues in the combination with applicative
functors, Russo’s original proposal conservatively allowed unpack-
ing a module only local to core-level expressions, but this restric-
tion has been lifted in later systems, restricting only the occurrence
of unpacking inside applicative functors.

First-Class Modules The first to unify ML’s stratified type sys-
tem into one language was Harper & Mitchell’s XML calculus [10].
It is a dependent type theory modeling modules as terms of Martin-
Löf-style Σ and Π types, closely following MacQueen’s original
ideas [17]. The system enforces predicativity through the introduc-
tion of two universes U1 and U2, which correspond directly to our
notion of small and large type, and both systems allow bothU1 : U2

and U1 ⊆ U2. XML lacks any account of either sealing or translu-
cency, which makes it fall short as a foundation for modern ML.

That gap was closed by Harper & Lillibridge’s calculus of
translucent sums [9, 16], which also was a dependently typed lan-
guage of first-class modules. Its main novelty were records with
both opaque and transparent type components, directly modeling
ML structures. However, unlike XML, the calculus is impredica-
tive, which renders it undecidable.

Translucent sums where later superseded by the notion of sin-
gleton types [31]; they formed the foundation of Dreyer et al.’s type
theory for higher-order modules [6]. However, to avoid undecid-
ability, this system went back to second-class modules.

One concern in dependently typed theories is phase separation:
to enable compile-time checking without requiring core-level com-
putation, such theories must be sufficiently restricted. For example,
Harper et al. [11] investigate phase separation for the XML calcu-
lus. The beauty of the F-ing approach is that it enjoys phase sepa-
ration by construction, since it does not use dependent types.

Applicative Functors Leroy proposed applicative semantics for
functors [15], as implemented in OCaml. Russo later combined
both generative and applicative functors in one language [28] and
implemented them in Moscow ML; others followed [30, 6, 4, 25].

A system like Leroy’s, where all functors are applicative, would
be incompatible with first-class modules, because the application
in type paths like F(A).t needs to be phase-separable to enable
type checking, but not all functions are. Russo’s system has similar
problems, because it allows converting generative functors into
applicative ones. Like Dreyer [4] or F-ing modules [25], 1ML
hence combines applicative (pure) and generative (impure) functors
such that applicative semantics is only allowed for functors whose
body is both pure and separable. In F-ing modules, applicativity is
even inferred from purity, and sealing itself not considered impure;
the Technical Appendix [23] shows a similar extension to 1ML.

In the version of 1ML shown in the main paper, an applicative
functor can only be created by sealing a fully transparent functor
with pure function type, very much like in Shao’s system [30].

Type Inference There has been little work that has considered
type inference for modules. Russo examined the interplay between
core-level inference and modules [28], elegantly dealing with vari-
able scoping via unification under a mixed prefix. Dreyer & Blume
investigated how functors interfere with the value restriction [5].

12 2015/6/18

At the same time, there have been ambitious extensions of ML-
style type inference with higher-rank or impredicative types [8,
14, 33, 29]. Unlike those systems, 1ML never tries to infer a
polymorphic type annotation: all guessed types are monomorphic
and polymorphic parameters require annotation.

On the other hand, 1ML allows bundling types and terms to-
gether into structures. While it is necessary to explicitly annotate
terms that contain types, associated type quantifiers (both univer-
sal and existential) and their actual introduction and elimination are
implicit and effectively inferred as part of the elaboration process.

7. Future Work
1ML, as shown here, is but a first step. There are many possible
improvements and extensions.

Implementation We have implemented a simple prototype inter-
preter for 1ML (mpi-sws.org/˜rossberg/1ml/), but it would be
great to gather more experience with a “real” implementation.

Applicative Functors We would like to extend 1ML’s rather basic
notion of applicative functor with pure sealing à la F-ing modules
(see the Technical Appendix [23]), but more importantly, make it
properly abstraction-safe by tracking value identities [25].

Implicits The domain of implicit functions in 1ML is limited to
type type. Allowing richer types would be a natural extension, and
might provide functionality like Haskell-style type classes [34].

Type Inference Despite the ability to express first-class and
higher-order polymorphism, inference in 1ML is rather simple.
Perhaps it is possible to combine 1ML elaboration with some of
the more advanced approaches to inference described in literature.

More Polymorphism Replacing more of subtyping with poly-
morphism might lead to better inference: row polymorphism [21]
could express width subtyping, and simple effect polymorphism [32]
would allow more extensive use of pure function types.

Recursive Modules In [24] we gave a fully general design for
recursive modules, elaborating into an extension of System F. It
would be interesting (but complicated) to redo it 1ML-style, in
order to achieve a more uniform treatment of recursion for 1ML.

Dependent Types Finally, 1ML goes to length to push the bound-
aries of non-dependent typing. It’s a legitimate question to ask,
what for? Why not go fully dependent? Well, even then sealing ne-
cessitates some equivalent of weak sums (existential types). Incor-
porating them, along with the quantifier pushing of our elaboration,
into a dependent type system might pose an interesting challenge.

Acknowledgements
I thank Scott Kilpatrick, Claudio Russo, Gabriel Scherer, and the
anonymous reviewers for their careful and helpful comments.

References
[1] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gab-

bay, and T. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, vol. 2, chapter 2, pages 117–309. Oxford University Press, 1992.

[2] S. K. Biswas. Higher-order functors with transparent signatures. In
POPL, 1995.

[3] L. Damas and R. Milner. Principal type-schemes for functional
programs. In POPL, 1982.

[4] D. Dreyer. Understanding and Evolving the ML Module System. PhD
thesis, CMU, 2005.

[5] D. Dreyer and M. Blume. Principal type schemes for modular pro-
grams. In ESOP, 2007.

[6] D. Dreyer, K. Crary, and R. Harper. A type system for higher-order
modules. In POPL, 2003.

[7] J. Garrigue and A. Frisch. First-class modules and composable signa-
tures in Objective Caml 3.12. In ML, 2010.

[8] J. Garrigue and D. Rémy. Semi-explicit first-class polymorphism for
ML. Information and Computation, 155(1-2), 1999.

[9] R. Harper and M. Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In POPL, 1994.

[10] R. Harper and J. C. Mitchell. On the type structure of Standard ML.
In ACM TOPLAS, volume 15(2), 1993.

[11] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and
the phase distinction. In POPL, 1990.

[12] R. Harper and B. Pierce. Design considerations for ML-style module
systems. In B. C. Pierce, editor, Advanced Topics in Types and Pro-
gramming Languages, chapter 8, pages 293–346. MIT Press, 2005.

[13] R. Harper and C. Stone. A type-theoretic interpretation of Standard
ML. In Proof, Language, and Interaction: Essays in Honor of Robin
Milner. MIT Press, 2000.

[14] D. Le Botlan and D. Rémy. MLF: Raising ML to the power of System
F. In ICFP, 2003.

[15] X. Leroy. Applicative functors and fully transparent higher-order
modules. In POPL, 1995.

[16] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order
Module Systems. PhD thesis, CMU, 1997.

[17] D. MacQueen. Using dependent types to express modular structure.
In POPL, 1986.

[18] R. Milner. A theory of type polymorphism in programming lan-
guages. JCSS, 17:348–375, 1978.

[19] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[20] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
ACM TOPLAS, 10(3):470–502, July 1988.

[21] D. Rémy. Records and variants as a natural extension of ML. In
POPL, 1989.

[22] A. Rossberg. The Missing Link – Dynamic components for ML. In
ICFP, 2006.

[23] A. Rossberg. 1ML – Core and modules as one (Technical Appendix),
2015. mpi-sws.org/˜rossberg/1ml/.

[24] A. Rossberg and D. Dreyer. Mixin’ up the ML module system. ACM
TOPLAS, 35(1), 2013.

[25] A. Rossberg, C. Russo, and D. Dreyer. F-ing modules. JFP,
24(5):529–607, 2014.

[26] C. Russo. Non-dependent types for Standard ML modules. In PPDP,
1999.

[27] C. Russo. First-class structures for Standard ML. Nordic Journal of
Computing, 7(4):348–374, 2000.

[28] C. Russo. Types for Modules. ENTCS, 60, 2003.

[29] C. Russo and D. Vytiniotis. QML: Explicit first-class polymorphism
for ML. In ML, 2009.

[30] Z. Shao. Transparent modules with fully syntactic signatures. In
ICFP, 1999.

[31] C. A. Stone and R. Harper. Extensional equivalence and singleton
types. ACM TOCL, 7(4):676–722, 2006.

[32] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect
inference. JFP, 2(3):245271, 1992.

[33] D. Vytiniotis, S. Weirich, and S. Peyton Jones. FPH: First-class
polymorphism for Haskell. In ICFP, 2008.

[34] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In POPL, 1989.

[35] A. Wright.Simple imperative polymorphism.LASC,8:343–356, 1995.

13 2015/6/18

